3.3.40 \(\int x^5 (d+e x) (d^2-e^2 x^2)^p \, dx\) [240]

3.3.40.1 Optimal result
3.3.40.2 Mathematica [A] (verified)
3.3.40.3 Rubi [A] (verified)
3.3.40.4 Maple [F]
3.3.40.5 Fricas [F]
3.3.40.6 Sympy [B] (verification not implemented)
3.3.40.7 Maxima [F]
3.3.40.8 Giac [F]
3.3.40.9 Mupad [F(-1)]

3.3.40.1 Optimal result

Integrand size = 23, antiderivative size = 148 \[ \int x^5 (d+e x) \left (d^2-e^2 x^2\right )^p \, dx=-\frac {d^5 \left (d^2-e^2 x^2\right )^{1+p}}{2 e^6 (1+p)}+\frac {d^3 \left (d^2-e^2 x^2\right )^{2+p}}{e^6 (2+p)}-\frac {d \left (d^2-e^2 x^2\right )^{3+p}}{2 e^6 (3+p)}+\frac {1}{7} e x^7 \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {7}{2},-p,\frac {9}{2},\frac {e^2 x^2}{d^2}\right ) \]

output
-1/2*d^5*(-e^2*x^2+d^2)^(p+1)/e^6/(p+1)+d^3*(-e^2*x^2+d^2)^(2+p)/e^6/(2+p) 
-1/2*d*(-e^2*x^2+d^2)^(3+p)/e^6/(3+p)+1/7*e*x^7*(-e^2*x^2+d^2)^p*hypergeom 
([7/2, -p],[9/2],e^2*x^2/d^2)/((1-e^2*x^2/d^2)^p)
 
3.3.40.2 Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.89 \[ \int x^5 (d+e x) \left (d^2-e^2 x^2\right )^p \, dx=\frac {\left (d^2-e^2 x^2\right )^p \left (-\frac {7 d \left (d^2-e^2 x^2\right ) \left (2 d^4+2 d^2 e^2 (1+p) x^2+e^4 \left (2+3 p+p^2\right ) x^4\right )}{(1+p) (2+p) (3+p)}+2 e^7 x^7 \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {7}{2},-p,\frac {9}{2},\frac {e^2 x^2}{d^2}\right )\right )}{14 e^6} \]

input
Integrate[x^5*(d + e*x)*(d^2 - e^2*x^2)^p,x]
 
output
((d^2 - e^2*x^2)^p*((-7*d*(d^2 - e^2*x^2)*(2*d^4 + 2*d^2*e^2*(1 + p)*x^2 + 
 e^4*(2 + 3*p + p^2)*x^4))/((1 + p)*(2 + p)*(3 + p)) + (2*e^7*x^7*Hypergeo 
metric2F1[7/2, -p, 9/2, (e^2*x^2)/d^2])/(1 - (e^2*x^2)/d^2)^p))/(14*e^6)
 
3.3.40.3 Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.01, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {542, 243, 53, 279, 278, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^5 (d+e x) \left (d^2-e^2 x^2\right )^p \, dx\)

\(\Big \downarrow \) 542

\(\displaystyle e \int x^6 \left (d^2-e^2 x^2\right )^pdx+d \int x^5 \left (d^2-e^2 x^2\right )^pdx\)

\(\Big \downarrow \) 243

\(\displaystyle e \int x^6 \left (d^2-e^2 x^2\right )^pdx+\frac {1}{2} d \int x^4 \left (d^2-e^2 x^2\right )^pdx^2\)

\(\Big \downarrow \) 53

\(\displaystyle e \int x^6 \left (d^2-e^2 x^2\right )^pdx+\frac {1}{2} d \int \left (\frac {d^4 \left (d^2-e^2 x^2\right )^p}{e^4}-\frac {2 d^2 \left (d^2-e^2 x^2\right )^{p+1}}{e^4}+\frac {\left (d^2-e^2 x^2\right )^{p+2}}{e^4}\right )dx^2\)

\(\Big \downarrow \) 279

\(\displaystyle e \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \int x^6 \left (1-\frac {e^2 x^2}{d^2}\right )^pdx+\frac {1}{2} d \int \left (\frac {d^4 \left (d^2-e^2 x^2\right )^p}{e^4}-\frac {2 d^2 \left (d^2-e^2 x^2\right )^{p+1}}{e^4}+\frac {\left (d^2-e^2 x^2\right )^{p+2}}{e^4}\right )dx^2\)

\(\Big \downarrow \) 278

\(\displaystyle \frac {1}{2} d \int \left (\frac {d^4 \left (d^2-e^2 x^2\right )^p}{e^4}-\frac {2 d^2 \left (d^2-e^2 x^2\right )^{p+1}}{e^4}+\frac {\left (d^2-e^2 x^2\right )^{p+2}}{e^4}\right )dx^2+\frac {1}{7} e x^7 \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {7}{2},-p,\frac {9}{2},\frac {e^2 x^2}{d^2}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{7} e x^7 \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {7}{2},-p,\frac {9}{2},\frac {e^2 x^2}{d^2}\right )+\frac {1}{2} d \left (\frac {2 d^2 \left (d^2-e^2 x^2\right )^{p+2}}{e^6 (p+2)}-\frac {\left (d^2-e^2 x^2\right )^{p+3}}{e^6 (p+3)}-\frac {d^4 \left (d^2-e^2 x^2\right )^{p+1}}{e^6 (p+1)}\right )\)

input
Int[x^5*(d + e*x)*(d^2 - e^2*x^2)^p,x]
 
output
(d*(-((d^4*(d^2 - e^2*x^2)^(1 + p))/(e^6*(1 + p))) + (2*d^2*(d^2 - e^2*x^2 
)^(2 + p))/(e^6*(2 + p)) - (d^2 - e^2*x^2)^(3 + p)/(e^6*(3 + p))))/2 + (e* 
x^7*(d^2 - e^2*x^2)^p*Hypergeometric2F1[7/2, -p, 9/2, (e^2*x^2)/d^2])/(7*( 
1 - (e^2*x^2)/d^2)^p)
 

3.3.40.3.1 Defintions of rubi rules used

rule 53
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int 
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, 
x] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0] && LeQ[7*m + 4*n + 4, 0]) 
|| LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 

rule 279
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^IntP 
art[p]*((a + b*x^2)^FracPart[p]/(1 + b*(x^2/a))^FracPart[p])   Int[(c*x)^m* 
(1 + b*(x^2/a))^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && 
!(ILtQ[p, 0] || GtQ[a, 0])
 

rule 542
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> 
 Simp[c   Int[x^m*(a + b*x^2)^p, x], x] + Simp[d   Int[x^(m + 1)*(a + b*x^2 
)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && IntegerQ[m] &&  !IntegerQ[2*p]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.3.40.4 Maple [F]

\[\int x^{5} \left (e x +d \right ) \left (-e^{2} x^{2}+d^{2}\right )^{p}d x\]

input
int(x^5*(e*x+d)*(-e^2*x^2+d^2)^p,x)
 
output
int(x^5*(e*x+d)*(-e^2*x^2+d^2)^p,x)
 
3.3.40.5 Fricas [F]

\[ \int x^5 (d+e x) \left (d^2-e^2 x^2\right )^p \, dx=\int { {\left (e x + d\right )} {\left (-e^{2} x^{2} + d^{2}\right )}^{p} x^{5} \,d x } \]

input
integrate(x^5*(e*x+d)*(-e^2*x^2+d^2)^p,x, algorithm="fricas")
 
output
integral((e*x^6 + d*x^5)*(-e^2*x^2 + d^2)^p, x)
 
3.3.40.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 937 vs. \(2 (121) = 242\).

Time = 1.95 (sec) , antiderivative size = 972, normalized size of antiderivative = 6.57 \[ \int x^5 (d+e x) \left (d^2-e^2 x^2\right )^p \, dx=d \left (\begin {cases} \frac {x^{6} \left (d^{2}\right )^{p}}{6} & \text {for}\: e = 0 \\- \frac {2 d^{4} \log {\left (- \frac {d}{e} + x \right )}}{4 d^{4} e^{6} - 8 d^{2} e^{8} x^{2} + 4 e^{10} x^{4}} - \frac {2 d^{4} \log {\left (\frac {d}{e} + x \right )}}{4 d^{4} e^{6} - 8 d^{2} e^{8} x^{2} + 4 e^{10} x^{4}} - \frac {3 d^{4}}{4 d^{4} e^{6} - 8 d^{2} e^{8} x^{2} + 4 e^{10} x^{4}} + \frac {4 d^{2} e^{2} x^{2} \log {\left (- \frac {d}{e} + x \right )}}{4 d^{4} e^{6} - 8 d^{2} e^{8} x^{2} + 4 e^{10} x^{4}} + \frac {4 d^{2} e^{2} x^{2} \log {\left (\frac {d}{e} + x \right )}}{4 d^{4} e^{6} - 8 d^{2} e^{8} x^{2} + 4 e^{10} x^{4}} + \frac {4 d^{2} e^{2} x^{2}}{4 d^{4} e^{6} - 8 d^{2} e^{8} x^{2} + 4 e^{10} x^{4}} - \frac {2 e^{4} x^{4} \log {\left (- \frac {d}{e} + x \right )}}{4 d^{4} e^{6} - 8 d^{2} e^{8} x^{2} + 4 e^{10} x^{4}} - \frac {2 e^{4} x^{4} \log {\left (\frac {d}{e} + x \right )}}{4 d^{4} e^{6} - 8 d^{2} e^{8} x^{2} + 4 e^{10} x^{4}} & \text {for}\: p = -3 \\- \frac {2 d^{4} \log {\left (- \frac {d}{e} + x \right )}}{- 2 d^{2} e^{6} + 2 e^{8} x^{2}} - \frac {2 d^{4} \log {\left (\frac {d}{e} + x \right )}}{- 2 d^{2} e^{6} + 2 e^{8} x^{2}} - \frac {2 d^{4}}{- 2 d^{2} e^{6} + 2 e^{8} x^{2}} + \frac {2 d^{2} e^{2} x^{2} \log {\left (- \frac {d}{e} + x \right )}}{- 2 d^{2} e^{6} + 2 e^{8} x^{2}} + \frac {2 d^{2} e^{2} x^{2} \log {\left (\frac {d}{e} + x \right )}}{- 2 d^{2} e^{6} + 2 e^{8} x^{2}} + \frac {e^{4} x^{4}}{- 2 d^{2} e^{6} + 2 e^{8} x^{2}} & \text {for}\: p = -2 \\- \frac {d^{4} \log {\left (- \frac {d}{e} + x \right )}}{2 e^{6}} - \frac {d^{4} \log {\left (\frac {d}{e} + x \right )}}{2 e^{6}} - \frac {d^{2} x^{2}}{2 e^{4}} - \frac {x^{4}}{4 e^{2}} & \text {for}\: p = -1 \\- \frac {2 d^{6} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{6} p^{3} + 12 e^{6} p^{2} + 22 e^{6} p + 12 e^{6}} - \frac {2 d^{4} e^{2} p x^{2} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{6} p^{3} + 12 e^{6} p^{2} + 22 e^{6} p + 12 e^{6}} - \frac {d^{2} e^{4} p^{2} x^{4} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{6} p^{3} + 12 e^{6} p^{2} + 22 e^{6} p + 12 e^{6}} - \frac {d^{2} e^{4} p x^{4} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{6} p^{3} + 12 e^{6} p^{2} + 22 e^{6} p + 12 e^{6}} + \frac {e^{6} p^{2} x^{6} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{6} p^{3} + 12 e^{6} p^{2} + 22 e^{6} p + 12 e^{6}} + \frac {3 e^{6} p x^{6} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{6} p^{3} + 12 e^{6} p^{2} + 22 e^{6} p + 12 e^{6}} + \frac {2 e^{6} x^{6} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{6} p^{3} + 12 e^{6} p^{2} + 22 e^{6} p + 12 e^{6}} & \text {otherwise} \end {cases}\right ) + \frac {d^{2 p} e x^{7} {{}_{2}F_{1}\left (\begin {matrix} \frac {7}{2}, - p \\ \frac {9}{2} \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{7} \]

input
integrate(x**5*(e*x+d)*(-e**2*x**2+d**2)**p,x)
 
output
d*Piecewise((x**6*(d**2)**p/6, Eq(e, 0)), (-2*d**4*log(-d/e + x)/(4*d**4*e 
**6 - 8*d**2*e**8*x**2 + 4*e**10*x**4) - 2*d**4*log(d/e + x)/(4*d**4*e**6 
- 8*d**2*e**8*x**2 + 4*e**10*x**4) - 3*d**4/(4*d**4*e**6 - 8*d**2*e**8*x** 
2 + 4*e**10*x**4) + 4*d**2*e**2*x**2*log(-d/e + x)/(4*d**4*e**6 - 8*d**2*e 
**8*x**2 + 4*e**10*x**4) + 4*d**2*e**2*x**2*log(d/e + x)/(4*d**4*e**6 - 8* 
d**2*e**8*x**2 + 4*e**10*x**4) + 4*d**2*e**2*x**2/(4*d**4*e**6 - 8*d**2*e* 
*8*x**2 + 4*e**10*x**4) - 2*e**4*x**4*log(-d/e + x)/(4*d**4*e**6 - 8*d**2* 
e**8*x**2 + 4*e**10*x**4) - 2*e**4*x**4*log(d/e + x)/(4*d**4*e**6 - 8*d**2 
*e**8*x**2 + 4*e**10*x**4), Eq(p, -3)), (-2*d**4*log(-d/e + x)/(-2*d**2*e* 
*6 + 2*e**8*x**2) - 2*d**4*log(d/e + x)/(-2*d**2*e**6 + 2*e**8*x**2) - 2*d 
**4/(-2*d**2*e**6 + 2*e**8*x**2) + 2*d**2*e**2*x**2*log(-d/e + x)/(-2*d**2 
*e**6 + 2*e**8*x**2) + 2*d**2*e**2*x**2*log(d/e + x)/(-2*d**2*e**6 + 2*e** 
8*x**2) + e**4*x**4/(-2*d**2*e**6 + 2*e**8*x**2), Eq(p, -2)), (-d**4*log(- 
d/e + x)/(2*e**6) - d**4*log(d/e + x)/(2*e**6) - d**2*x**2/(2*e**4) - x**4 
/(4*e**2), Eq(p, -1)), (-2*d**6*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e* 
*6*p**2 + 22*e**6*p + 12*e**6) - 2*d**4*e**2*p*x**2*(d**2 - e**2*x**2)**p/ 
(2*e**6*p**3 + 12*e**6*p**2 + 22*e**6*p + 12*e**6) - d**2*e**4*p**2*x**4*( 
d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p**2 + 22*e**6*p + 12*e**6) - 
d**2*e**4*p*x**4*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 12*e**6*p**2 + 22*e* 
*6*p + 12*e**6) + e**6*p**2*x**6*(d**2 - e**2*x**2)**p/(2*e**6*p**3 + 1...
 
3.3.40.7 Maxima [F]

\[ \int x^5 (d+e x) \left (d^2-e^2 x^2\right )^p \, dx=\int { {\left (e x + d\right )} {\left (-e^{2} x^{2} + d^{2}\right )}^{p} x^{5} \,d x } \]

input
integrate(x^5*(e*x+d)*(-e^2*x^2+d^2)^p,x, algorithm="maxima")
 
output
e*integrate(x^6*e^(p*log(e*x + d) + p*log(-e*x + d)), x) + 1/2*((p^2 + 3*p 
 + 2)*e^6*x^6 - (p^2 + p)*d^2*e^4*x^4 - 2*d^4*e^2*p*x^2 - 2*d^6)*(-e^2*x^2 
 + d^2)^p*d/((p^3 + 6*p^2 + 11*p + 6)*e^6)
 
3.3.40.8 Giac [F]

\[ \int x^5 (d+e x) \left (d^2-e^2 x^2\right )^p \, dx=\int { {\left (e x + d\right )} {\left (-e^{2} x^{2} + d^{2}\right )}^{p} x^{5} \,d x } \]

input
integrate(x^5*(e*x+d)*(-e^2*x^2+d^2)^p,x, algorithm="giac")
 
output
integrate((e*x + d)*(-e^2*x^2 + d^2)^p*x^5, x)
 
3.3.40.9 Mupad [F(-1)]

Timed out. \[ \int x^5 (d+e x) \left (d^2-e^2 x^2\right )^p \, dx=\int x^5\,{\left (d^2-e^2\,x^2\right )}^p\,\left (d+e\,x\right ) \,d x \]

input
int(x^5*(d^2 - e^2*x^2)^p*(d + e*x),x)
 
output
int(x^5*(d^2 - e^2*x^2)^p*(d + e*x), x)